skip to main content


Search for: All records

Creators/Authors contains: "Pradal, Marie-Aude"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    Abstract Numerous climate models display large-amplitude, long-period variability associated with quasiperiodic convection in the Southern Ocean, but the mechanisms responsible for producing such oscillatory convection are poorly understood. In this paper we identify three feedbacks that help generate such oscillations within an Earth system model with a particularly regular oscillation. The first feedback involves increased (decreased) upward mixing of warm interior water to the surface, resulting in more (less) evaporation and loss of heat to the atmosphere which produces more (less) mixing. This positive feedback helps explain why temperature anomalies are not damped out by surface forcing. A second key mechanism involves convective (nonconvective) events in the Weddell Sea causing a relaxation (intensification) of westerly winds, which at some later time results in a pattern of currents that reduces (increases) the advection of freshwater out of the Weddell Sea. This allows for the surface to become lighter (denser) which in turn can dampen (trigger) convection—so that the overall feedback is a negative one with a delay—helping to produce a multidecadal oscillation time scale. The decrease (increase) in winds associated with convective (nonconvective) states also results in a decrease (increase) in the upward mixing of salt in the Eastern Weddell Sea, creating a negative (positive) salinity anomaly that propagates into the Western Weddell Sea and dampens (triggers) convection—again producing a negative feedback with a delay. A principal oscillatory pattern analysis yields a reasonable prediction for the period of oscillation. Strengths of the feedbacks are sensitive to parameterization of mesoscale eddies. 
    more » « less
  3. This study examines the impact of changing the lateral diffusion coefficient ARedion the transport of the Antarctic Circumpolar Current (ACC). The lateral diffusion coefficient ARediis poorly constrained, with values ranging across an order of magnitude in climate models. The ACC is difficult to accurately simulate, and there is a large spread in eastward transport in the Southern Ocean (SO) in these models. This paper examines how much of that spread can be attributed to different eddy parameterization coefficients. A coarse-resolution, fully coupled model suite was run with ARedi= 400, 800, 1200, and 2400 m2s−1. Additionally, two simulations were run with two-dimensional representations of the mixing coefficient based on satellite altimetry. Relative to the 400 m2s−1case, the 2400 m2s−1case exhibits 1) an 11% decrease in average wind stress from 50° to 65°S, 2) a 20% decrease in zonally averaged eastward transport in the SO, and 3) a 14% weaker transport through the Drake Passage. The decrease in transport is well explained by changes in the thermal current shear, largely due to increases in ocean density occurring on the northern side of the ACC. In intermediate waters these increases are associated with changes in the formation of intermediate waters in the North Pacific. We hypothesize that the deep increases are associated with changes in the wind stress curl allowing Antarctic Bottom Water to escape and flow northward.

     
    more » « less
  4. Abstract

    Because colored dissolved materials (CDMs) trap incoming sunlight closer to the surface, they have the potential to affect sea surface temperatures. We compare two models, one with and one without CDMs, and show that their presence leads to an increase in the amplitude of the seasonal cycle over coastal and northern subpolar regions, which may exceed 2 °C. The size and sign of the change are controlled by the interplay between enhanced shortwave heating of the surface, shading and cooling of the subsurface, and the extent to which these are connected by vertical mixing. The changes in the seasonal cycle largely explain changes in the range of temperature extremes, an aspect of climate with important implications for ecosystem cycling. The modeled changes associated with CDMs have an intriguing resemblance to the observed trend in the annual cycle seen in recent decades, suggesting that more attention be paid to the role of “ocean yellowing” in global change.

     
    more » « less